
Phase ordering kinetics in the Swift-Hohenberg equation

Katsuya Ouchi
Kobe Design University, 8-1-1 Gakuennishi-machi, Nishi-ku, Kobe 651-21, Japan

Hirokazu Fujisaka
Department of Physics, Kyushu University 33, Fukuoda 812-81, Japan

~Received 28 December 1995!

It is shown that the Swift-Hohenberg equationẇ5ew2(¹21k0
2)2w2w3 for e.3/2k0

4 exhibits a new phase
ordering kinetics from the lamellar phase to the uniform state. A domain wall propagates with the velocity
c(R)52(2/R)(e18k0

4)/4k0
2 and reduces the domain structure which finally shrinks to a spot. HereR21

denotes the curvature of the domain wall. The dynamics of relaxation is investigated by observing how the
structure function evolves in time. It is found that the structure function shows the same scaling relationship
that is known from the ordering kinetics in the time-dependent Ginzburg-Landau equation.
@S1063-651X~96!11509-9#

PACS number~s!: 82.20.Wt, 05.70.Ln, 82.40.2g, 82.20.Mj

In recent years, pattern formation in systems far from
equilibrium have been extensively studied from the numeri-
cal as well as experimental point of view@2#, e.g., the
Rayleigh-Bénard convection for liquid layers heated from
below @1,2#, liquid crystals under an electric field@3,4#,
chemical reaction-diffusion systems@5,6#, etc. Especially,
stationary inhomogeneous patterns arising through symmetry
breaking instability have been observed recently in experi-
ments by using an open, unstirred chemical reactor~gel re-
actor!, which produces spatially inhomogeneous states~Tur-
ing patterns!. Ouyang and Swinney found bifurcations
among several patterns and showed that roll, hexagon, and
their mixed states are formed depending on the external con-
trol parameters@6#.

The dynamics near the onset of the pattern formation is
often discussed with the Swift-Hohenberg~SH! equation
@7–9#,

]w~r ,t !

]t
5@e2~¹21k0

2!2#w2w352
dH$w%

dw~r ,t !
, ~1!

where

H$w%5E dr F2
e

2
w21

1

4
w41

1

2
$~¹21k0

2!w%2G . ~2!

The SH equation has been derived by carrying out the per-
turbation expansion with respect to the deviation from the
heat conduction state in a Rayleigh-Be´nard system@10#. The
value ofH decreases monotonously in time

Ḣ52E S dH

dwD 2dr<0. ~3!

HenceH is the Lyapunov functional of~1!. Equation ~1!
suggests that the order parameterw(r ,t) evolves in time with
a typical wave numberk0. The dynamics for smalle reflects
the ordering process in the Rayleigh-Be´nard convection,
where the velocity field is symmetric with respect to a plane
if the upper and lower plates have the same boundary con-
ditions @10#.

The aim of the present paper is to show that the SH equa-
tion ~1! exhibits a phase ordering kinetics similar to that
studied in terms of the time-dependent Ginzburg-Landau
~TDGL! equation

]c

]t
5ec2c31¹2c, ~4!

if e.ec , whereec(.0) denotes a certain critical value be-
ing specified below. It is known that the latter system de-
scribes the ordering kinetics generated by a temperature
quench from the disorderd phase (c.0) for e,0 to a two-
phase region fore.0 @11,12#.

Although the SH equation~1! was derived for a small
ueu, we hereafter regard it as a model equation, and choose
e arbitrary. The SH has two nontrivial uniform states

w0
~6 !56Ae2k0

4 ~5!

for e.k0
4, which are linearly stable fore.3/2k0

4[ec @13#.
Let us first discuss the domain dynamics in one dimen-

sion. A steady kink patternw* (j) satisfies

S d2dj2
1k0

2D 2w*5ew*2w
*
3 , ~6!

with the conditionw* (6`)5w0
(6) . The kink is located at

j50. The asymptotic solution of~6! sufficiently far away
from the kink position is given by@13#

w* ~j!5w01A exp~2uju/j0!cos@Q~j2f!#, ~7!

whereA andf are constants.j0 andQ determine the kink
width and the wave number of the wave front oscillation.
They are given by

j05S 2

A2~e2k0
4!2k0

2D 1/2, Q5$ 1
2 @A2~e2k0

4!1k0
2#%1/2.

~8!

Figure 1 shows the numerically determined evolution of a
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one-dimensional kink-antikink pair. The simulation has been
carried out ate52.7 andk051. It has features similar to
those of the TDGL equation with the exception that the
present kink pattern oscillates near the interface of the do-
mains due to the existence of the wave numberk0.

Hereafter we will study the domain dynamics in two di-
mensions numerically and analytically. The two uniform
states~5! are stable fore.ec , and an appropriate initial
condition will lead to the phase separation. Since the roll
pattern is stable also, the two patterns compete with each
other. Hence the final pattern depends on the initial condi-
tion.

At first we have numerically solved~1! by making use of
the explicit Euler scheme on a two-dimensional square lat-
tice with a periodic boundary condition. The simulation was
carried out with a time stepDt51/1600 and a mesh size
Dx5p/8. The initial state was generated by adding a random
number uniformly distributed in the range@20.01, 0.01# to
the unstable uniform statew050.

Figures 2~a!–2~d! show typical spatial patterns for several
values ofe/k0

4 on a square lattice of grid size 2563256 at the
time t5200. These figures reveal a specific property of the
phase separation in the SH equation. For smalle/k0

4, a roll
state overcomes the uniform pattern, and one observes the
roll pattern shown in Fig. 2~a!. On the other hand, a uniform
state is more stable than roll patterns for largee/k0

4, where
one observes the phase separation as a transient process@Fig.
2~d!#. In addition, these figures suggest that there exists a
threshold between both regimes. As will be discussed in the
sequel, the threshold is evaluated asecr.6.3k0

4. The value of
the Lyapunov functional for the uniform solutionw0 is easily
obtained as

H$w0%5 1
4 ~e2k0

4!2S, ~9!

whereS is the area of the system. Values of the Lyapunov
functional for nonuniform states are determined after a tran-
sient process in a simulation on a square lattice of grid size
1283128. Figure 3 shows the value ofH for uniform solu-
tions and those obtained from the numerical simulation at

time t51000 as a function ofe. The figure suggests that
there exist a thresholdecr where both data cross each other.
If H$wroll% denotes the Lyapunov functional for the roll pat-
tern, andH$wspot% for the uniform state with spots then

H$w0%.H$wroll% for e,ecr ,

H$w0%,H$wspot% for e.ecr . ~10!

Accordingly, the roll solution and the uniform solution are
both stable fore.3k0

4/2, but the roll solution is more stable
for e,ecr whereas the uniform solution is more stable for

FIG. 1. Temporal evolution of kink-antikink pair observed at
e52.7 in the one-dimensional system for a given initial condition.
Times are~a! t50, ~b! 1, ~c! 2, ~d! 50.

FIG. 2. Spatial patterns for~a! e54, ~b! 6.0, ~c! 6.4, ~d! 8 on a
square lattice of grid size 2563256 with t5200. These figures
suggest that there exists a thresholde cr.6.3k0

4 from a roll pattern
to a uniform pattern. For details see the text.

FIG. 3. The Lyapunov functional of the uniform solution~9!
~solid line! and of numerical simulation~diamonds!. The simulation
was carried out on a square lattice of grid size 1283128 and values
of the Lyapunov functional were evaluated att51000.
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e.ecr . As a result, the time evolution from the unstable
uniform state leads to a roll pattern fore,ecr and to a phase
separation pattern fore.ecr . From that figureecr is esti-
mated to be in the range@5k0

4 ,6k0
4#. Howeverecr evaluated

in this way is smaller than the value obtained from the direct
observation of the pattern. This difference stems from the
slow evolution of the Lyapunov functional so that the value
at time t51000 is insufficient to determine the final value.
The determination from the direct observation of the pattern
yields ecr.6.3k0

4. This is consistent with the fact that the
Lyapunov functional decreases as time goes on, which
means that the crossing point of the solid line and the curve
with diamonds in Fig. 3 may shift to the right.

The asymptotic behavior of the phase separation was
studied numerically ate58k0

4. The simulation has been car-
ried out on a square lattice of grid size 2563256, and the
pattern evolution is observed for 0,t,3000. Figure 4
shows a typical evolution of patterns at~a! t5100,~b! 1000,
~c! 2000, and~d! 3000. The domain wall propagates, reduces
the domain structure, and finally shrinks to one spot, pro-
vided that there was no spot present in the inital domain. If
several spots are enclosed by a domain wall, the shrinking
process does not destroy the spots but forms the ‘‘lotus root’’
structure shown in Fig. 4~d!. Once such a structure is created,
it appears to remain unchanged indicating that it is a meta-
stable structure. Our simulations were carried out up to a
time t53000, and we infer that the structure is metastable at
least on this time scale.

Let us discuss the propagation velocityc(R) of the do-
main wall in dependence on the curvature radiusR, which is
assumed to be large compared to the width of the kink. As-
suming an axial symmetry of the pattern,~1! is approxi-
mately written in polar coordinates

]w

]t
5ew2S ]2

]r 2
1k0

2D 2w2
2

R
w-2

2k0
2

R
w82w3. ~11!

The primes denote derivatives with respect to the radial co-
ordinater . In deriving this expression we have replaced the
Laplacian¹2 by ]2/]r 21(1/R)]/]r for the large radius of
the domain wallR, and we have neglected terms of order
R22. With this approximation the trigger wave is described
by a solutionw5w(h) with h5r2c(R)t, where the speed
c of the wave front is determined by the differential equation

2Fc~R!2
2

R

w-
w8

2
2k0

2

R Gw85ew2S ]2

]r 2
1k0

2D 2w2w3.

~12!

Taking Eq.~6! into account we find that the speed obeys

c~R!5
2

R S k021 w-
w8

U
R
D . ~13!

The explicit value of the velocityc(R) can be obtained as
follows. First the termw98/w8uR is determined by using the
amplitude equation of the one-dimensional SH equation. By
noting that~1! has a characteristic wave numberk0, the so-
lution of ~1! in one dimension is approximately expressed in
the form

w~x,t !5Re@eik0xC~x,t !#. ~14!

Substituting~14! into ~1!, one obtains the TDGL equation

]C

]t
5eC2uCu2C14k0

2 ]2C

]x2
. ~15!

The stationary solution with the boundary condition
C(6`)56Ae is given by@14#

C~x!5Ae tanhS F e

8k0
2 G1/2xD . ~16!

Inserting solution ~16! into ~14!, the explicit value of
w98/w8 uR at x50 readsw98/w8 uR52 (e112k0

4)/4k0
2. Then

the propagation velocityc(R) of the domain wall takes the
explicit form

c~R!52
2

R

e18k0
4

4k0
2 . ~17!

The direction of the propagation coincides with the simula-
tion result. Namely, the domain wall propagates so as to
reduce the domain structure.

Furthermore, to investigate the relaxation dynamics for
e.ecr , let us introduce the structure functionS(k,t) of
w(r ,t) by

S~k,t !5 K U E E w~r ,t !eik•rdx dyU2L , ~18!

wherek5uku and ^•••& denotes the average taken with re-
spect to the orientation ofk. One gets the statistical charac-
teristics of the ordering process by observing the time depen-
dence ofS(k,t). In our caseS(k,t) has a single peak with

FIG. 4. Spatial patterns at~a! t5100, ~b! 1000, ~c! 2000, ~d!
3000 with e58. These figures reveal that the domain wall propa-
gates so as to reduce the domain structure and eventually shrinks to
a spot. The spot pattern coexists with the phase separation pattern.
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amplitudeA(t) and widthG(t), where the latter is defined as
S(G(t),t)5e21A(t). G(t) and 1/A(t) are plotted as func-
tions of t in Fig. 5. In an intermediate time region corre-
sponding to the phase order,A(t) andG(t) appear to depend
on t as

A~ t !}tb, G~ t !}t2b, ~19!

with the dynamic scaling exponentb, whereb takes ap-
proximately the value 1/2. We will comment on the devia-
tions from this behavior at the end of this paragraph. Figure
6 showsS(k,t)/tb vs ktb at t5100, 400, and 1000. This
implies that in the above mentioned intermediate region, a
scaling law

S~k,t !5tbg~ktb! ~20!

appears to hold, whereg(x) is a scaling function. The same
scaling relationship is known from the TDGL equation. It
has been found that the scaling function of the SH equation
for a smalle(.0) has its maximum atk5k0 because of the
existence of the spatial structure, and the scaling exponent
takes the valueb51/5 @15#. Figure 6, on the other hand,
shows that the scaling function fore.ecr has no peak, and
that the dynamics of the phase separation evolves much

faster compared to the formation process of roll patterns.
However, in the stage following the separation, the ‘‘lotus
root’’ structure shown in Fig. 4~d! dominates the dynamics,
which causes an extremely slow relaxation dynamics. Figure
5 suggests that the temporal evolution with the ‘‘lotus root’’
structure is slower than that of the phase separation men-
tioned above.

The asymptotic dynamics observed in the formation of the
‘‘lotus root’’ structure appears to have two different length
scales, i.e., the scale of the phase separation and that of the
‘‘lotus root’’ structure ~cf. Fig. 4!. The coexistence of these
length scales of structures makes the dependence~19! on t
difficult to observe. When our simulation is performed with a
larger system size, it is expected that the intermediate time
region, where the length scale of the phase separation is
much larger than that of the ‘‘lotus root’’ structure, tends to
increase. Hence the dependence~19! on t is more pro-
nounced. The analysis of the dependence~19! and the value
of b are the matter of future investigation.
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FIG. 5. Time evolution of the peak heightA(t) and the peak
width G(t) of the structure functionS(k,t) for e58. They show a
power lawA(t)}tb, w(t)}t2b with b51/2.

FIG. 6. Scaling plot ofS(k,t)/tb vs ktb with b51/2 for e58 at
t5100, 400 and 1000. This figure reveals thatS(k,t) is asymptoti-
cally scaled asS(k,t)5tbg(ktb) with a scaling functiong(z).
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