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Phase ordering kinetics in the Swift-Hohenberg equation

Katsuya Ouchi
Kobe Design University, 8-1-1 Gakuennishi-machi, Nishi-ku, Kobe 651-21, Japan

Hirokazu Fujisaka
Department of Physics, Kyushu University 33, Fukuoda 812-81, Japan
(Received 28 December 1995

It is shown that the Swift-Hohenberg equation ew— (V2+k3)?w—w? for e>3/2kg exhibits a new phase
ordering kinetics from the lamellar phase to the uniform state. A domain wall propagates with the velocity
c(R)=—(2/IR)(e+ 8k3)/4k§ and reduces the domain structure which finally shrinks to a spot. Refe
denotes the curvature of the domain wall. The dynamics of relaxation is investigated by observing how the
structure function evolves in time. It is found that the structure function shows the same scaling relationship
that is known from the ordering kinetics in the time-dependent Ginzburg-Landau equation.
[S1063-651%96)11509-9

PACS numbe(s): 82.20.Wt, 05.70.Ln, 82.46.g, 82.20.Mj

In recent years, pattern formation in systems far from The aim of the present paper is to show that the SH equa-
equilibrium have been extensively studied from the numerition (1) exhibits a phase ordering kinetics similar to that
cal as well as experimental point of viej2], e.g., the studied in terms of the time-dependent Ginzburg-Landau
Rayleigh-Baard convection for liquid layers heated from (TDGL) equation
below [1,2], liquid crystals under an electric fielf,4], ) S
chemical reaction-diffusion systeni$,6], etc. Especially, o eV, (4)
stationary inhomogeneous patterns arising through symmetry
breaking instability have been observed recently in experiif ¢>¢., wheree,(>0) denotes a certain critical value be-
ments by using an open, unstirred chemical rea(def re-  ing specified below. It is known that the latter system de-
actop, which produces spatially inhomogeneous st&fes-  scribes the ordering kinetics generated by a temperature
ing patterns Ouyang and Swinney found bifurcations quench from the disorderd phasg=£0) for e<0 to a two-
among several patterns and showed that roll, hexagon, arghase region foe>0 [11,12.
their mixed states are formed depending on the external con- aAlthough the SH equatioril) was derived for a small
trol parameter$6]. . |€el, we hereafter regard it as a model equation, and choose

The dynamics near the onset of the pattern formation ig arbitrary. The SH has two nontrivial uniform states
often discussed with the Swift-Hohenbef§H) equation
[7-9], wi) =+ \/e—kg (5

aw(r,t) SH{w}

=[e— (VZ+k3)?w—w=— (1)  for e>kg, which are linearly stable foe>3/2k3= e, [13].

ot ow(r,t) Let us first discuss the domain dynamics in one dimen-
where sion. A steady kink patterw, (£) satisfies
2 2
€, 1 4 1 5 12v 2 2 3
H{w}= | dr — Wi Zw +§{(V +k§wi?. (2 d_§2+k0 W, = €W, —Wy, (6)

The SH equation has been derived by carrying out the peiith the conditionw*_(too)z_wgt). The kink is located at
turbation expansion with respect to the deviation from the§=0. The asymptotic solution of6) sufficiently far away
heat conduction state in a Rayleighsed systeni10]. The  from the kink position is given by13]

value ofH decreases monotonously in time
W, (§) =Wo+A exp(—[€|/&)codQ(é— )], (7)

H= _J whereA and ¢ are constantsé, and Q determine the kink
width and the wave number of the wave front oscillation.
HenceH is the Lyapunov functional ofl). Equation(l)  They are given by
suggests that the order parametér,t) evolves in time with

1/2
a typical wave numbek,. The dynamics for smakl reflects _ 2 O NN Y N AR T
the ordering process in the Rayleighsed convection, & V2(e—kd-K2) Q={z[V2(e=ko) +koli ™

SH\?
ﬂ dr=<0. (3)

where the velocity field is symmetric with respect to a plane (8)
if the upper and lower plates have the same boundary con-
ditions[10]. Figure 1 shows the numerically determined evolution of a
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FIG. 1. Temporal evolution of kink-antikink pair observed at
€=2.7 in the one-dimensional system for a given initial condition.
Times are(a) t=0, (b) 1, (c) 2, (d) 50.

one-dimensional kink-antikink pair. The simulation has been

carried out ate=2.7 andky=1. It has features similar to

those of the TDGL equation with the exception that the FIG. 2. Spatial patterns fdi) e=4, (b) 6.0, (c) 6.4,(d) 8 on a

present kink pattern oscillates near the interface of the dosquare lattice of grid size 256256 with t=200. These figures

mains due to the existence of the wave numiger sugges.t that there exists a thl_reshetglz 6.3 from a roll pattern
Hereafter we will study the domain dynamics in two di- {© @ uniform pattern. For details see the text.

mensions numerically and analytically. The two uniform .

states(5) are stable fore>¢., and an appropriate initial tlr:ne t:mtoo tﬁs ahfulnctlorr: O%'thT]e dflgt]ure sugges:]s ttr;]at
condition will lead to the phase separation. Since the rolnere exist a thres olé,, where bo ata cross each other.
lrfI H{w,q} denotes the Lyapunov functional for the roll pat-

other. Hence the final pattern depends on the initial condite™: @ndH{Wspop for the uniform state with spots then

tion.
. . . H{wg}>H{w for e<e,,
At first we have numerically solved) by making use of {wo} > H{wran} € €or
the explicit Euler scheme on a two-dimensional square lat- H{wo}<H{wspof for e>e. (10)

tice with a periodic boundary condition. The simulation was , i i ,
carried out with a time stept=1/1600 and a mesh size Accordingly, the roll solution and the uniform solution are

Ax= /8. The initial state was generated by adding a randon©th stable fore>3kg/2, but the roll solution is more stable
number uniformly distributed in the range-0.01, 0.0} to for e<e. whereas the uniform solution is more stable for
the unstable uniform statg;=0.

Figures Za)—2(d) show typical spatial patterns for several
values ofe/kg on a square lattice of grid size 28&56 at the
time t=200. These figures reveal a specific property of the
phase separation in the SH equation. For smﬂdﬁ, a roll
state overcomes the uniform pattern, and one observes the
roll pattern shown in Fig. @). On the other hand, a uniform
state is more stable than roll patterns for laedk?, where
one observes the phase separation as a transient pfeagss
2(d)]. In addition, these figures suggest that there exists a
threshold between both regimes. As will be discussed in the L ¢
sequel, the threshold is evaluatedegs=6.3g. The value of
the Lyapunov functional for the uniform solutiaw, is easily
obtained as

<

H{w}

-6)(104 L L L L L L L 1
2 4 6g/kt8 10

H{wo}= % (e—k3)?S, (9)

whereS is the area of the system. Values of the Lyapunov

functional for nonuniform states are determined after a tran- FiG. 3. The Lyapunov functional of the uniform solutidf)
sient process in a simulation on a square lattice of grid siz@solid line) and of numerical simulatiofdiamonds. The simulation
128x128. Figure 3 shows the value bff for uniform solu-  was carried out on a square lattice of grid size 2228 and values
tions and those obtained from the numerical simulation abf the Lyapunov functional were evaluatedtat1000.
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The primes denote derivatives with respect to the radial co-
ordinater. In deriving this expression we have replaced the
LaplacianV? by ¢%/ar2+ (1/R)alar for the large radius of
the domain wallR, and we have neglected terms of order
R~2. With this approximation the trigger wave is described
by a solutionw=w(#) with »=r—c(R)t, where the speed

c of the wave front is determined by the differential equation

2w 2K5] R
- C(R)—ﬁw—?w=ew— ﬁ_rz+k0 wW—WwW-.
(12

Taking Eq.(6) into account we find that the speed obeys

"

W
Ko+ —

W (13

2
C(R)Zﬁ
R

The explicit value of the velocitg(R) can be obtained as
follows. First the termw”’/w’|g is determined by using the
amplitude equation of the one-dimensional SH equation. By

FIG. 4. Spatial patterns a#) t=100, (b) 1000, (c) 2000, (d) noting that(1) has a characteristic wave numbey; the so-
3000 with e=8. These figures reveal that the domain wall propa-lution of (1) in one dimension is approximately expressed in
gates so as to reduce the domain structure and eventually shrinks tlhe form
a spot. The spot pattern coexists with the phase separation pattern. .

w(x,t)=Rd e*oW¥ (x,1)]. (14
e>e€.. As a result, the time evolution from the unstable
uniform state leads to a roll pattern fex e, and to a phase
separation pattern foe>e.. From that figuree., is esti- EN J2
mated to be in the randékj,6k3]. Howevere, evaluated o 6‘1’—|‘P|2‘P+4KSW- (15
in this way is smaller than the value obtained from the direct
observation of the pattern. This difference stems from therpe stationary solution with the boundary condition
slow evolution of the Lyapunov functional so that the value\I,(ioo)= + /€ is given by[14]
at timet=1000 is insufficient to determine the final value.

The determination from the direct observation of the pattern
yields e,=~6.3¢. This is consistent with the fact that the V(x)= e taﬂ*(
Lyapunov functional decreases as time goes on, which

means that the_cro_ssing point o_f the solid_ line and the curvgnserting solution (16) into (14), the explicit value of
with diamonds in Fig. 3 may shift to the right. W' Iw' | atx=0 readsw”’ /W’ |g= — (e+12k%)/4k2. Then

The asymptotic behavii)r of the phase separation Wage propagation velocitg(R) of the domain wall takes the
studied numerically a&=8kj,. The simulation has been car- explicit form

ried out on a square lattice of grid size 26856, and the

pattern evolution is observed for<t<<3000. Figure 4 2 e+ 8k§

shows a typical evolution of patterns(@ t= 100, (b) 1000, c(R)=— R a2 - 17)

(c) 2000, andd) 3000. The domain wall propagates, reduces 0

the domain structure, and finally shrinks to one spot, pro-The direction of the propagation coincides with the simula-
vided that there was no Spot present in the inital domain. |Ei0n result. Name|y, the domain wall propagates SO as to
several spots are enclosed by a domain wall, the shrinkingaduce the domain structure.

process does not destroy the spots but forms the “lotus root”  Fyrthermore, to investigate the relaxation dynamics for

structure shown in F|g(d) Once such a structure is Created, e> €crs let us introduce the structure functicﬂk,t) of
it appears to remain unchanged indicating that it is a metay(r t) by

stable structure. Our simulations were carried out up to a

time t=3000, and we infer that the structure is metastable at e r

least on this time scale. S(k,t)= ffw(r,t)e dx dy“),
Let us discuss the propagation veloc@yR) of the do-

main wall in dependence on the curvature radysvhich is ~ wherek=|k| and(---) denotes the average taken with re-

assumed to be large compared to the width of the kink. Asspect to the orientation df. One gets the statistical charac-

suming an axial symmetry of the patterfi) is approxi- teristics of the ordering process by observing the time depen-

mately written in polar coordinates dence ofS(k,t). In our caseS(k,t) has a single peak with

Substituting(14) into (1), one obtains the TDGL equation

1/2
x) . (16)

€
8k3

(18
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FIG. 5. Time evolution of the peak height(t) and the peak FIG. 6. Scaling plot o5(k,t)/t? vskt? with 8=1/2 fore=8 at
width I'(t) of the structure functiors(k,t) for e=8. They show a t=100, 400 and 1000. This figure reveals tB5gk,t) is asymptoti-
power lawA(t)o«t?, w(t)ot™# with g=1/2. cally scaled ass(k,t)=tPg(kt?) with a scaling functiorg(z).

amplitudeA(t) and widthI'(t), where the latter is defined as faster compared to the formation process of roll patterns.
S(['(t),t)=e 1A(t). ['(t) and 1A(t) are plotted as func- However, in the stage following the separation, the “lotus
tions of t in Fig. 5. In an intermediate time region corre- roOt” structure shown in Fig. @) dominates the dynamics,

sponding to the phase ordé(t) andI'(t) appear to depend which causes an extremely slow relaxation dynamics. Figure

ont as 5 suggests that the temporal evolution with the “lotus root”
structure is slower than that of the phase separation men-
A(t)xtP, T(t)oct™ A, (190  tioned above.
The asymptotic dynamics observed in the formation of the
with the dynamic scaling exponeiff, where g takes ap-  “|otus root” structure appears to have two different length

proximately the value 1/2. We will comment on the devia-scales, i.e., the scale of the phase separation and that of the

tions from this behavior at the end of this paragraph. Figure‘lotus root” structure (cf. Fig. 4. The coexistence of these

6 showsS(k,t)/t? vs kt? at t=100, 400, and 1000. This |ength scales of structures makes the dependéi@eon t

implies that in the above mentioned intermediate region, &ifficult to observe. When our simulation is performed with a

scaling law larger system size, it is expected that the intermediate time

_.p s region, where the length scale of the phase separation is

S(k,t) =t"g(kt”) (20 much larger than that of the “lotus root” structure, tends to

increase. Hence the dependend®) on t is more pro-

nounced. The analysis of the depende(k® and the value

qu B are the matter of future investigation.

appears to hold, whemg(x) is a scaling function. The same
scaling relationship is known from the TDGL equation. It
has been found that the scaling function of the SH equatio
for a smalle(>0) has its maximum &t=k, because of the The authors are grateful to W. Just for a critical reading of
existence of the spatial structure, and the scaling exponemite manuscript. This study was partially supported by a
takes the valugB=1/5 [15]. Figure 6, on the other hand, Grant-in-Aid for General Scientific ResearchNo.
shows that the scaling function fer> €., has no peak, and 40156849 from the Ministry of Education and Culture,
that the dynamics of the phase separation evolves muchapan.
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